
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 16,629-654 (1993) 

FLUX DIFFERENCE SPLITTING FOR OPEN-CHANNEL 
FLOWS 

P. GLAISTER 
Department of Mathematics, P.O. Box 220, University of Reading. Whiteknights, Reading RG6 2AX, U.K. 

SUMMARY 

A finite difference scheme based on flux difference splitting is presented for the solution of the one- 
dimensional shallow-water equations in open channels, together with an extension to two-dimensional 
flows. A linearized problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based 
on numerical characteristic decomposition, is presented for obtaining approximate solutions to the lin- 
earized problem. The method of upwind differencing is used for the resulting scalar problems, together with 
a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. The 
scheme is applied to a one-dimensional dam-break problem, and to a problem of flow in a river whose 
geometry induces a region of supercritical flow. The scheme is also applied to a two-dimensional dam-break 
problem. The numerical results are compared with the exact solution, or other numerical results, where 
available. 

KEY WORDS Shallow-water equations Subcritical and supercritical flows Open channels 

1. INTRODUCTION 

The flow of water in a channel with (local) rectangular cross-section and smoothly varying 
bottom surface is governed by the one-dimensional shallow-water equations for open channels. 
The assumption of hydrostatic pressure distribution is used in deriving these equations.' Since 
analytical solutions of these equations are not generally available, they are solved numerically. 
Computational models of river flow based on the so-called St. Venant equations of open-channel 
flow are a well-established tool in engineering practice. Such models can provide quantitative 
information on discharge, velocity and level for a variety of purposes including flood defence 
design, navigation, flood forecasting, flood plain zoning, dam-break analysis and irrigation 
scheme control. 

Several explicit and implicit finite difference methods have been used to solve the shallow-water 
equations.'-" One feature of this set of hyperbolic equations is the formation of bores, i.e. 
discontinuous solutions, which can be difficult to represent accurately even if a shock-capturing 
method is used. The most popular scheme in the hydraulic engineering community is the implicit 
method of Preissman.' However, this scheme does not perform well in the presence of discontinu- 
ities. Finite element methods have also been applied to these equations (see, for example 
Reference 6). 
In the field of unsteady gas dynamics governed by the Euler equations, where shocks are 

frequently present, some authors have designed finite difference schemes that have good shock- 
capturing properties (sce, for example, Reference 7). These schemes solve linearized Riemann 
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problems using upwind differencing and flux limiters to obtain shocks that are spread over two or 
three mesh points. An alternative approach to flux difference splitting was proposed by Vila' for 
the equations of isentropic gas dynamics and has been applied with success to the shallow-water 
equations.' The scheme of Godunov'' solves Riemann problems exactly using an iterative 
procedure. Vila simplifies this iteration using approximate Riemann invariants, and achieves 
second-order accuracy by considering generalized Riemann problems, i.e. ones where the data are 
assumed to be piecewise linear discontinuous. However, this scheme does not apply to open- 
channel flows. In contrast, the scheme in Reference 7 applies upwind differencing to a specially 
constructed set of scalar problems. Second-order accuracy is then achieved using classical 
second-order scalar schemes, limited to avoid non-physical oscillations in the solution. 

In this paper a new scheme is presented for the open-channel flow equations that incorporates 
the ideas mentioned earlier for the Euler equations, and an extension to the two-dimensional 
equations is also given. Although the derivation of this scheme is detailed, its implementation is 
straightforward. The resulting algorithm is efficient and produces satisfactory results for a prob- 
lem of geometry-induced supercritical flow in a river, together with a one- and a two-dimensional 
dam-break problem. 

2. GOVERNING EQUATIONS 

The St. Venant equations governing the rough turbulent flow of water in an open channel can be 
written as 

where 
W, + f, = b, (1) 

w = (A, QIT, (2a) 

and 

The quantities A = A(x,  t )  and Q = Q(x,  t )  = Au(x, t )  represent the cross-sectional area and mass 
flow, respectively, at a general position x measured along the channel, and at time t, where u is the 
fluid velocity. The gravitational constant is represented by g. We consider the case where the 
channel is locally rectangular, so that 

A=B(x)d (x ,  t) ,  

where B is the breadth and d the depth. The height is then h = h(x ,  t )  = d(x, t )  + z(x), where z is the 
height of the river bed. Also K = A / M  (hydraulic radius)2i3, where Manning's constant M is taken 
as 0.03, and the hydraulic radius = A/(wetted perimeter) = A / ( 2 A / E  + E) .  Equations (1)-(2c) can 
then be written, after some manipulation, as 

where 
W, + f, + Dh, = C, 

w = ( A ,  A U ) T ,  

(f(w) = (Au, AU2)T,  (4b) 
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as above, 

and 

h(w) = (0, q)T, 
D=(’ 0 SIB ) 

(2A/ ;+  B)-4’3 
B’(x) - ~ A z ’ ( x )  - O.OOO9gAu I U I  

Equation (3) has been written so that the right-hand side does not contain any derivatives of the 
flow variables A and Q = Au. 

3. LINEARIZED RIEMANN PROBLEM 

If the approximate solution of equations (3)-(4e) is sought using a finite difference method then 
the solution is known at a set of discrete mesh points (x, t) = (xi, t,) at any time t = t,. Following 
Godunov,’O the approximate solution wj” to w at (xj, t,) can be considered as a set of piecewise 
constants w=wj” for x ~ ( x ~ - A x / 2 ,  xj+Ax/2) at time t,, where A X = X ~ - X ~ - ~  is a constant mesh 
spacing. A Riemann problem is now present at each interface xj- l i 2  =$(xj- +xj)  separating 
adjacent states wy- 1, w; . If the shallow-water equations are linearized by considering the 
Jacobian matrices of the flux functions f and h to be constant in each interval (xj- 1, xj), the 
resulting equations can be solved approximately using explicit time stepping, and this is described 
in Section 4. The time step At is restricted so that the solutions of adjacent Riemann problems do 
not interact. The scalar problems that result from this analysis can be solved by upwind 
differencing; however, an approximate Jacobian matrix needs to be constructed in each interval 
so that shock capturing is automatic. 

4. APPROXIMATE RIEMANN SOLVER 

4.1. Linearization 

Consider the interval [ x j -  xj] = [ x L ,  X R ]  and denote by wL, wR the approximations to w at 
xL, xR, respectively. We now rewrite equation (3) as 

af ah 
w,+- w,+D - w,=c(w), 

aw aw 

and solve approximately the associated linearized Riemann problem 

w, + (F + BE)  w, = c(w), 

(5 )  

with data wL, wR either side of the point xj-1,2, where the matrices F”(wL, wR), D”(wL, w R )  and 
E?(wL, wR) are constant. We then use the approximate form of equation (6): 

w;+I-w; - -  (w;-w;)- 
+(F+DH) Ax - Z(W” 1, 

At (7) 

where Z is an approximation to c, and P may be L or R. The matrix 6 is assumed to have the form 
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where is an average of B ( x L )  and B(xR). The matrices and are approximations to the 
Jacobian matrices 

af i?h 
F=-“- (w) and H=- (w), 

OW i?W 

respectively, and are constructed so that 

and 

for all arbitrary jumps Aw, where A( -)=( 
and shock capturing. 

4.2. Construction 

.)L. This ensures that thescheme is conservative 

The solution of this problem is straightforward to determine and is given by 

and 
8=L1 0 0  J; 

where u” denotes the square root mean of left and right states of u, namely, 

f i =  J(AL)uL + J (AR)uR 

J V R )  + J!AL) ’ 
and A” denotes the arithmetic mean of left and right states, namely, 

2 = 1(AL + AR) 

B = 3(BL + BR = ’2 CB(XL) + N X R  )I 

(12) 

(see the Appendix for a detailed derivation of equations (1 1) and (12)). Since no specific average 

(1 3) 
B’ results, we take I 

for computational efficiency. 

4.3. Approximation for 2 

Following the averages determined above, a natural approximation for E can be obtained from 
equations (4e) and (1 1) (1 3) as 

E =  O,y----gA---O-0009gA1?JGl i2 AB - A 2  - ( 2x,;+B)-413]T [ g2 Ax Ax 

4.4. Projection 

equation (7) onto the eigcnvectors of F+filT. 
To complete the Riemann solver it is necessary to project wi-wi, and E (given above) in 

Firstly, the eigenvalues of F+ fiE? are 
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with associated eigenvectors 

(Note that the matrix df/dw + D (dhldw) = F + DH has eigenvalues and eigenvectors given by 
equations (15a)-(16b) in the limit wL, w ~ - + w . )  Projecting 

we find that 

where 

Thus, in equation (7) 

a"( 2 AA+--,Au ) , 

since f+fil? has eigenvalues with eigenvectors E i .  Similarly, if we project 

then 

so that equation (7) may be written as 

O f  
2 2 x y i c i  

w;+ - w; 
= 0, 

At + i = l A x  

where Yi = Ei + Pi/&, A x  and At represent the mesh spacings in the x and t directions, respectively, 
and the point P may be L or R. Upwind differencing now applied to equation (24) gives the 
following first-order algorithm for the solution of equations (3)-(4e): 

or 

At I 
A x  ' I '  

At - 

add - - A n p , E .  to wR when x i>O 

(25) 

add - -An-p4 to wL when &<O. 
A x  I "  
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Thus, we note the direction of flow of information given by the approximate eigenvalues and 
use this information to update the solution consistent with the theory of characteristics of 
equation (3). In addition, second-order transfers of these first-order increments can be made to 
achieve higher accuracy, providing they are limited to maintain monotonicity.“ The use of these 
‘flux-limiters’ improves accuracy without introducing non-physical spurious oscillations, espe- 
cially at bores. To allow depression waves to be treated correctly, the first-order increment can be 
considered as two separate increments being sent to either end of the cell.” 

5. EXTENSION TO TWO DIMENSIONS 

The two-dimensional St. Venant equations governing open-channel flows can be written in 
conservation form as 

fit  + Ex + Gz = 1+ g , (26) 

G(w)= $w, $uw, #wZ+- , ( 42 2 1 

The quantities 4 = 4(x, z, t )  and u = u(x, z, t )  and w = w(x, z, t )  represent g multiplied by the total 
height above the bottom of the channel and the components of the fluid velocity in the x- and 
z-direction, respectively, at a general position x, z and at time t .  The gravitational constant is 
represented by g and the undisturbed depth of the water is given by h(x, z). The elevation 
q =q(x, z, t )  above the plane y=O is measured in the vertical y-direction. The quantities sx, s, are 
the slopes of the energy grade lines in the x- and z-direction, respectively, and are determined 
from the steady-state friction formulae (in SI units): 

32% J(u’ + w2)  

(4/Y)4’3 ’ 
n2w J(u2 + w2) 

(4/g)4’3 ’ 

S, = 

S, = 

where n represents Manning’s roughness coefficient. Alternatively, the following form could be 
used 

where C is Chtzy’s flow friction coefficient. 
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We propose solving equation (26) using similar ideas to those given in Section 4, in particular, 
the technique of operator splitting, i.e. solve successively 

and 

along the x- and z-co-ordinate lines, respectively, noting that the vectors ? and g are associated 
with the x- and z-direction, respectively. We give the scheme for the solution of equation (32a) and 
the scheme for the solution of equation (32b) will then follow by symmetry. 

Following the approach outlined in Section 4, a first-order, explicit numerical scheme for 
equation (32a) along an x-co-ordinate line z=zo can be written as 

where At, Ax represent mesh spacings in the t- and x-direction, respectively, +: represents the 
numerical approximation to the solution &(xj, zo ,  rnAt), after rn time steps, and at a point xi on 
this co-ordinate line. The value of k depends on the sign of each & (see below) as the technique of 
upwinding is employed, i.e. k could be J or j -  1. Thus, the practical implementation of equation 
(38) is to add -(At/A~)zy,$ to &;- if &<O, to obtain +;-+:, or to add -(At/A~)&y"~0~ to &:, if 
&>O, to obtain @Ym+l, for each computational cell ( x ~ - ~ ,  xj) on the co-ordinate line z=zo. The 
quantities xi, Ci represent approximations to the eigenvalues, and eigenvectors, respectively, of the 
Jacobian &/a+ in the cell (xj- 1, xi). These, together with the appropriate wavestrengths, Ti, 
represent an extension of those contained in Section 4. The required expressions in (38) are 

y"l,2 =--A$ &- " - AU - + " (AIZ-~~AX),  
2 2p 2IJ(C+IJ) 

j 3 = $ A w  
and 

where the approximations to u, w, 4 and 44 in (xi- 1, xj)  are given by 

, z = u  or w, 
J($j-l)zj-1 +J(4j)zj 

J($j-l)+J($j) 

Z=  

and 

(354 

(38) 

(39) 
respectively. The differences are defined by 

AZ=Z(xj, zo)-Z(xj-1, zO), Z = 4 ,  U, W ,  h. (40) 
The corresponding scheme for equation (32b), together with the resulting values of &, yi and Ci, 

can easily be deduced by symmetry. Second-order extensions are achieved as for the one- 
dimensional scheme in Section 4. 
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6. TEST PROBLEMS 

We consider three test problems to assess the schemes presented in Sections 4 and 5.  

Problem I 

Consider a wide, frictionless channel whose bottom surface is flat, and a barrier placed across 
its width. The water on one side of the barrier is at a different height to that on the other. At time 
t = 0, the barrier is removed and the resulting flow consists of a bore travelling downstream and 
a depression wave travelling upstream.' To treat this one-dimensional problem numerically 
consider a fixed region 0 <x < 1 with a barrier at x = 05.  The upstream water height is & and the 
downstream water height is &, as represented in Figure 1. The governing equations are given by 
equation (1) with b = 0. The assumption of zero friction is made so that the numerical solution can 

DAN 

Figure 1. A schematic representation of the dam in Problem 1 
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be compared with the exact solution' and the ratio 41/&, determines whether the flow down- 
stream of the barrier is subcritical or supercritical. (A region of flow is said to be supercritical if 
both eigenvalues ,I1, ,I2 given by equations (15a) and (15b) are of the same sign, i.e. when (uI >,/$; 
otherwise, the flow is said to be subcritical.) For large values of the ratio the flow 
downstream of the barrier becomes supercritical and the bore can be difficult to capture. (The 
speed of the bore is the speed at which the discontinuity in the solution travels.) In particular, the 
speed of the bore is not always correctly determined.4 

Problem 2 

Consider the flow in a channel with a smooth constriction and a sloping bottom surface, which 
shelves. This geometry induces a flow which becomes supercritical and the governing equations 
are given by equation (I). The channel is loo00 m long, and the breadth, B, varies from 10 m to 
5 m to 10 m (see Figure 2). The bed slope is taken to be a constant value, except between 4500 and 
5500 m, where twice this value is taken (see Figure 3). Only one boundary condition needs to be 
applied to each end of the channel. At the left-hand end the mass flow, Q, is specified, and at the 
right-hand end the depth, d ,  is specified by extrapolation from the interior. 

Problem 3 

This is a two-dimensional dam-break problem with a non-symmetrical breach. The computa- 
tional domain is defined by a channel 200 m long and 200 m wide and the governing equations 
are given by equation (26). The non-symmetrical breach is 75 m and the dam is 10 m thick, as 
shown in Figure 4. Initially, the water is at different heights &,, & on either side of the breach. 
For the purposes of comparison with other schemes, we consider a horizontal, frictionless 
channel. 

0 lo00 Moo 5ooo 4am so00 6ooo m Boo0 mo loo00 

Figure 3. Channel cross-section in Problem 2 
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Figure 4. The computational domain for Problem 3 

7. NUMERICAL RESULTS 

Numerical results are given for the three problems of Section 6 using the finite difference schemes 
of Sections 4 and 5. 

Problem 1 

Various ratios of q51 /q50 are taken in order to include both subcritical and supercritical flows. In 
each case the 'Superbee' limiter'' has been used so that the resulting scheme is second- 
order-accurate, but no spurious oscillations are produced. The results, together with the exact 
solution, are given in Figures 5-1 1. Figures 559 represent the cases /bo = 2,5,10,20 and 100, 
respectively, where b1 = 1 and 50 mesh points have been used. The approximate solution gives 
a good representation of the exact solution in each case. In the case q51 /b0 = 100, where the 
downstream flow is supercritical, there is a lack of resolution and the solution is significantly 
improved using 100 mesh points as in Figure 10. For supercritical cases, i.e. values of b1 /bo > 7.2, 
100 mesh points are generally needed to obtain a good approximation to the exact solution. This 
can be seen for the case q51 /& = 250 in Figure 11. All figures are at t = 0.25. The numerical results 
compare well with the results given by other  author^.^ 

Problem 2 

Figures 12-14 show the results for Problem 2 for a slope of 0.01, and the mass flow, Q, the 
depth, d, and the Froude number, F r = u / J ( g d ) ,  are all displayed. Figures 15-17 show the 
corresponding results for a slope of 0.02. Both sets of results are for 100 mesh points, a mass flow 



FLUX DIFFERENCE SPLITTING FOR OPEN-CHANNEL FLOWS 639 

# - Elevation /m 

u - Veloctty 

- EX- 80 LUt 

..---- Approximate solution 

50 tlesh potnts 
25 T t r e  st- 
Ax = 0.02 
At = 0.010 

E b a t  ton ret to = 2 
'Superbee' l t m l t e r  used 

I 
# = 1.OOO I I # = 0.500 

I 

I 
u =  o.Oo0 I u =  O.Oo0 

D 0.5 1 

T r a m p r e n t  Boudary Condl t tons 
at x = O a d x =  1 

at t t m e  t = 0.250 

Figure 5. Solution of Problem 1 with 4, /$o=2 and 50 mesh points 
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Figure 6. Solution of Problem 1 with /& = 5 and 50 mesh points 
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Figure 9. Solution of Problem 1 with 100 and 50 mesh points 
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Figure 11.  Solution of Problem 1 with &/$0=250 and 100 mesh points 
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of 20 m3/s and after a time of 3000 s. We see that the flow has reached a steady state, with a good 
prediction of the flow, even though it is supercritical in some, or all, of the channel. These results 
compare well with those of other authors, and Figures 18-23 show the corresponding results 
using the algorithm in Reference 13. 

Problem 3 

Two sets of initial conditions are chosen here: (a) $l/g=lO, &/g=5 and (b) &/g=lO, 
&, /g  = 0.05, representing tailwater/reservoir height ratios of 0.5 and 0.005, respectively, and a grid 

0 xw xwx) u#o so00 Mxx) 7000 Boo0 pooo l W x / m  

Figure IS. A plot of depth, d(m) for a bed-slope of 0.01 for Problem 2 using the method in Reference 13 

0 lo#) 2cm 3am uxlo K)o boo0 1ooo Boo0 wop ~#100 x/m 

Figure 19. A plot of mass flow, Q(m3 s-I),  for a bed-slope of 0.01 for Problem 2 using the method in Reference 13. 
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Figure 20. A plot of Froude number, Fr, for a bed-slope of 0.01 for Problem 2 using the method in Reference 
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Figure 21. A plot of depth, d(m), for a bed-slope of 0.02 for Problem 2 using the method in Reference 13 
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Figure 22. A plot of mass flow, Q(m3 s-I),  for a bed-slope of 0.02 for Problem 2 using the method in Reference 13 
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Figure 23. A plot of Froude number, Fr. for a bed-slope of 0.02 for Problem 2 using the method in Reference 13 
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Figure 24. Contours of surface elevation for a tailwater/reservoir height ratio of 0.5 at time 7.1 s for Problem 3 

Figure 25. Contours of surface elevation for a tailwater/reservoir height ratio of 0.005 at time 7.1 s for Problem 3 
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of 41 x 41 points results in a mesh size of 5 x 5 m. The results displaying surface elevation 
contours for these two cases are shown in Figures 24 and 25, respectively, at time t = 7.1 s. (N.B. 
The figures display contours where the dam is still intact since it is not possible to mask these 
areas.) In both cases we see that the bore has developed well. Only in case (a) is there significant 
reflection from the wall. This compares favourably with the results found by Fennema and 
Chaudry for the case where the bore is smeared over a number of cells. It is noted by these authors 
that many numerical schemes have difficulty in computing accurate solutions, if any, for small 
ratios of tailwater/reservoir height. 

The explicit finite difference scheme of Sections 4 and 5 is computationally efficient and the 
C.P.U. time taken to compute the results for Problem 2, for example, was as follows. Using an 
Amdahl V7 with 100 mesh points takes 0,0096 C.P.U. seconds to compute one time step and a total 
of 2.88 C.P.U. seconds to reach a real time of 3000 s using 300 time steps, each of 10 s. 

8. CONCLUSIONS 

A conservative finite difference scheme is presented for the solution of the one- and two- 
dimensional shallow-water equations in open channels based on flux difference splitting. By 
considering linearized Riemann problems, and solving these approximately using upwind differ- 
encing, enables the geometry-induced supercritical flow in an open channel, and the flow resulting 
in a dam break, to be predicted satisfactorily. The resulting scheme is computationally efficient 
and can be used with confidence to predict accurate solutions to open-channel flow problems. 

APPENDIX 

Here we derive the averages given in Section 4.2. Multiplying out equation (9a) gives 

and 
A(Au) = A(Au) 

- ii2 AA + 2ii A(Au) = A(Au2). 

Equation (41) is an identity, and equation (42) is a quadratic equation for ii with roots 

after simplifying the discriminant. With the plus sign no simple formula results. However, with the 
minus sign, the numerator in equation (43) can be simplified as 

A(A~)-J(ARAL ) ~ u  = < J A R  -JAL )(J(AR)uR + J(AL)uL), 

AA =AR -AL =(JAR + JA,) (JAR-JAL ), 

(44) 

(45) 

and since 

equation (43) with the minus sign, together with equations (44) and (45), imply that 

as in equation (11). 
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Finally, from equation (9b) 

P. GLAISTER 

2 AA = A  (A2/2), 

and, hence, 

- A(A2/2) 1 (A:-&)-  A=------ - - $(& + AL)r -- 
AA 2 AR-A, 

as in equation (12). 

(47) 
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